End-to-end Learning of Deterministic Decision Trees
نویسندگان
چکیده
Conventional decision trees have a number of favorable properties, including interpretability, a small computational footprint and the ability to learn from little training data. However, they lack a key quality that has helped fuel the deep learning revolution: that of being end-to-end trainable, and to learn from scratch those features that best allow to solve a given supervised learning problem. Recent work (Kontschieder 2015) has addressed this deficit, but at the cost of losing a main attractive trait of decision trees: the fact that each sample is routed along a small subset of tree nodes only. We here propose a model and ExpectationMaximization training scheme for decision trees that are fully probabilistic at train time, but after a deterministic annealing process become deterministic at test time. We also analyze the learned oblique split parameters on image datasets and show that Neural Networks can be trained at each split node. In summary, we present the first endto-end learning scheme for deterministic decision trees and present results on par with or superior to published standard oblique decision tree algorithms.
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملLabel Distribution Learning Forests
Label distribution learning (LDL) is a general learning framework, which assigns a distribution over a set of labels to an instance rather than a single label or multiple labels. Current LDL methods have either restricted assumptions on the expression form of the label distribution or limitations in representation learning. This paper presents label distribution learning forests (LDLFs) a novel...
متن کاملDifferentiable Decision Trees
As deep learning-based classifiers are increasingly adopted in real-world applications, the importance of understanding how a particular label is chosen grows. Single decision trees are an example of a simple, interpretable classifier, but are unsuitable for use with complex, high-dimensional data. On the other hand, the variational autoencoder (VAE) is designed to learn a factored, low-dimensi...
متن کاملDifferentiable Decision Trees
As deep learning-based classifiers are increasingly adopted in real-world applications, the importance of understanding how a particular label is chosen grows. Single decision trees are an example of a simple, interpretable classifier, but are unsuitable for use with complex, high-dimensional data. On the other hand, the variational autoencoder (VAE) is designed to learn a factored, low-dimensi...
متن کاملCombining decision trees and transformation-based learning to correct transferred linguistic representations
We present a hybrid machine learning approach to correcting features in transferred linguistic representations in machine translation. The hybrid approach combines decision trees and transformation-based learning. Decision trees serve as a filter on the intractably large search space of possible interrelations among features. Transformation-based learning results in a simple set of ordered rule...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.02743 شماره
صفحات -
تاریخ انتشار 2017